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Abstract—An approach joining highly diastereoselective Mukaiyama aldol reaction (process A) to the following radical
debromination reaction (process B) provides a reliable way to the stereoselective divergent synthesis of polypropionate
frameworks. A practical and reliable synthesis of the complete set of propionate stereotetrads from enantiopure syn- and
anti-2-methyl-3-methoxy-3-phenylpropanals was achieved by using the straightforward strategy. © 2002 Elsevier Science Ltd. All
rights reserved.

More straightforward approaches to the diastereoselec-
tive construction of polypropionates possessing units
with alternative hydroxyl and methyl groups are being
awaited for the versatile synthesis of biologically active
polyketide natural products. We have recently suc-
ceeded in a highly enantioselective, divergent synthesis
of syn- and anti-propionates, which was accomplished

in a sequential procedure of a chiral oxazaborolidi-
none-promoted enantioselective aldol reaction with
silylketene acetal 1 and a radical debromination reac-
tion.1,2 The approach joining the highly enantioselective
aldol reaction3 to the highly diastereoselective radical
reaction4 persuaded us to develop a reliable way to the
stereoselective divergent synthesis of polypropionate

Scheme 1.
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frameworks by combining a highly diastereoselective
Mukaiyama aldol reaction to the following radical pro-
cedure.5 Although iteration of the aldol reactions was
believed to be difficult and unavailable for polypropi-
onate construction,6 the linear approach, if possible,
might bring about a practical shortening of the syn-
thetic approach to various types of polypropionate
frameworks.7 We disclose herein a practical and reliable
synthesis of the complete set of propionate
stereotetrads from enantiopure syn- and anti-2-methyl-
3-methoxy-3-phenylpropanal, 2 and 3,8 by using a
straightforward strategy with a sequence of process A,
in which diastereoselective Mukaiyama aldol reactions
are expected to divergently give 3,4-syn- and anti-aldol
adducts 4, and process B, in which diastereoselective
debromination reactions are requested to divergently
lead 2,3-syn- and anti-stereotetrads 5, as shown in
Scheme 1.

Excellent syn-diastereoselection (Felkin–Anh control)
has been recognized in the BF3·OEt2-mediated aldol
reaction of �-methyl-�-siloxy aldehydes with a
silylketene acetal from ethyl propionate.9 A comple-
mentary access is, however, needed to clarify the itera-
tive syn- and anti-stereoselection necessary for the
diastereoselective polypropionate construction because
such systematic studies have been restricted to the case
of aldehydes bearing only an �- or a �-stereocenter.10

Typical bidentate Lewis acids, e.g. TiCl4 and SnCl4,
were known to undergo chelation-controlled addition
reactions in the case of the above aldehydes.11 How-
ever, such Lewis acids were reported to exhibit little to
no chelating capability in the aldol reaction of �-
methyl-�-benzyloxy aldehydes bearing a �-substituent
with enolsilanes.12 Then, the syn- and anti-diastereose-
lections in Mukaiyama aldol reaction of 2 and 3 were
investigated by using a model nucleophile 6. Felkin–Anh
control with BF3·OEt2: Excellent syn diastereoselection

was observed in the BF3·OEt2-mediated reaction of
both 2 and 3, with 6 to give essentially single aldol
adducts, 7 and 8, respectively, without incurring any
interference from the relative configuration at C-2 and
C-3 and the �-protecting group of the aldehydes
(Scheme 2). The syn adducts might be afforded via the
Felkin–Anh controlled addition modes where the major
factor responsible for the high syn selection is
attributable to the potential differences in the steric
bulkiness between the methyl group and the residual
group, involving the methoxy substituent, at C-2 of the
aldehydes. Chelation control with TiCl4: In spite of the
indefinite prediction of TiCl4 chelation control on �-
methyl-�-protected-oxy aldehydes as described above,12

the TiCl4-mediated reaction of syn aldehyde 2 with 6
resulted in fairly good anti selection (11:1) to give 9 in
84% yield (Scheme 2). Such anti selection (6:1) has been
reported only in a similar TiCl4 reaction system with
syn-3-benzyloxy-2-methyl-4-TBDMsilyloxybutanal and
6, related to an epothilone A synthesis.13 There are
noteworthy reaction conditions under which the TMS-
trapped syn-selective adducts, probably obtained
through a catalytic reaction mode, were found when a
sufficient amount of TiCl4 was not used. When we used
SnCl4 under similar reaction conditions, very high syn-
selection (30:1) was found which exhibits loss of the
chelating ability of the Lewis acid. In the case of anti
aldehyde 3, if the chelation with TiCl4 would be possi-
ble, the anti selectivity could be supposed to be consid-
erably diminished because the desired approach of the
silyl nucleophile under the chelation control should be
prevented by the �-methoxy substituent, oppositely
directed relative to �-methyl in the chelated conformer.
Unexpectedly, the TiCl4-mediated reaction led to
remarkably good anti selection (7:1) to give 10. These
results suggest that the chelation controls are surely
possible in the TiCl4-mediated reaction of both syn-
and anti-aldehydes, 2 and 3.14

With respect to process A, the Mukaiyama aldol reac-
tion of the silylketene acetal 1 under consideration was
examined by using BF3·OEt2 and TiCl4. As expected
above, the BF3·OEt2-mediated addition reaction of
silylketene acetal 1 to diastereomeric aldehydes, 2 and
3, resulted in excellent 3,4-syn-selection to give Felkin–
Anh controlled products, 11 and 12, respectively, with-
out any selection at C-2, as shown in Scheme 3. Thus,
the complete syn-selection was confirmed to be repro-
ducible at least in this reaction system, although a
relatively different contribution of the resident �-stere-
ocenter has been reported for the Felkin–Anh control
diastereoselectivity in the non-chelate-controlled addi-
tion reaction of similar aldehydes with enolsilanes.9a On
the other hand, in spite of the predicted drawbacks on
less chelation ability of TiCl4 to the aldehyde type in
question, the TiCl4-mediated addition reaction of alde-
hydes, 2 and 3, with 1 was also found to lead to fairly
good 3,4-anti selection to give the desired chelate-con-
trolled adducts, 13 and 14, respectively, without any
selection at C-2.

Next, for process B in elongating the polypropionate
chains an appropriate choice of the �-hydroxy protect-Scheme 2.
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Scheme 3.

Scheme 4.

ing group of 4 is strictly required in line with the
stereochemical demands for the following both debrom-
ination procedures directed to syn- and anti-selections.
Surveying a number of protection groups suitable for
the following diastereoselective debromination reac-
tions, we selected a methoxymethyl (MOM) protection
group, which can be smoothly introduced and depro-
tected under mild conditions, as an effective protection
group available for highly diastereoselective debromina-
tions to the desired eight stereotetrads 5. The major
aldol adducts, 11–14, were treated with
dimethoxymethane and P2O5 to give the corresponding
MOM-protected esters, 15–18, which consist of isomers
(almost 1:1) at C-2. In the debromination processes, the
MOM protection group allowed excellent and very high
diastereoselection in both routes to 2,3-syn-isomer via
chelation control and 2,3-anti-isomer via dipole con-
trol, as shown in Scheme 4.15 The stereocenter at C-2 of
the bromides, 15–18, does not contribute to the stereo-
chemical outcome in the radical debromination process
because the diastereoselection is achieved at the sp2

carbon center of the radical species generated by Et3B.
The 2,3-syn-selection might be attributable to the effec-
tive chelation of MgBr2 to the ethoxycarbonyl and the
MOM moiety while the 2,3-anti-selection is presumably
enhanced by the induced dipole–dipole repulsion
between the ethoxycarbonyl and the MOM moiety.1,4

After deprotection of the MOM group, followed by
simple column chromatography, the expected eight
stereotetrads, 27–34, were obtained in enantiopure state
in good yields.

In conclusion, a sequence of a highly diastereoselective
aldol reaction (process A) and the following highly
diastereoselective radical reaction (process B) has
opened up a very versatile, iterative approach toward
the divergent construction of polypropionate chains
with practically acceptable selectivity in good overall
yield. The straightforward strategy can tailor the
desired configuration in question during the synthesis

of a class of polyketide natural products. In process A,
a reliable discrete way to the reverse diastereoselection
could be achieved by the selection of classical Lewis
acids, BF3·OEt2 and TiCl4. In process B the MOM
protection group effectively affected both debromina-
tion reactions so as to more predominantly allow an
alternative diastereoselection. This methodology using
iterative aldol reactions is being developed in the
stereoselective construction of (+)-discodermolide.
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